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Given the key role of liquidity in finance research, identifying high quality proxies based

on daily (as opposed to intraday) data would permit liquidity to be studied over

relatively long timeframes and across many countries. Using new measures and widely

employed measures in the literature, we run horseraces of annual and monthly

estimates of each measure against liquidity benchmarks. Our benchmarks are effective

spread, realized spread, and price impact based on both Trade and Quote (TAQ) and Rule

605 data. We find that the new effective/realized spread measures win the majority of

horseraces, while the Amihud [2002. Illiquidity and stock returns: cross-section and

time-series effects. Journal of Financial Markets 5, 31–56] measure does well measuring

price impact.

& 2009 Published by Elsevier B.V.
1. Introduction

The role of liquidity in empirical finance has grown
rapidly over the past five years influencing conclusions in
asset pricing, market efficiency, and corporate finance. A
number of studies have proposed liquidity measures
derived from daily return and volume data as proxies for
investors’ liquidity and transaction costs. These studies
usually test whether security returns are related to these
liquidity measures but rarely test whether the measures
are related to actual transaction costs. The assumption
Elsevier B.V.

Jaden Falcone, Joel

Panayides, Xiaoyun

nd the Frontiers of

es. We also thank

e. We are solely

+1812 855 5875.
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that the available liquidity proxies capture the transaction
costs of market participants is often not tested because of
the limited availability of actual trading costs. In the US
markets transaction data are only available since 1983 and
in many countries transaction data are not available at all.
The consequences of not testing liquidity proxies on actual
trading data is that there is little consensus on which
measures are better and little evidence that any of the
proposed measures are related to investor experience.

Further, while a handful of studies, Lesmond, Ogden,
and Trzcinka (1999), Lesmond (2005), and Hasbrouck
(2009), test whether some of the available liquidity
proxies are related to liquidity benchmarks computed
from transaction data, they construct the liquidity proxies
on an annual or quarterly basis. Yet the vast majority of
the literature using liquidity proxies employs them on
monthly (or finer) data. Given the limited number of
liquidity proxies previously tested, the limited set of
liquidity benchmarks used in the literature, and the
absence of monthly proxies, it is not surprising that there
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are conflicting views about which measure is better
and that there is little assurance that these measures
actually capture the transaction costs of market partici-
pants. In short, not much is known about whether
transaction cost proxies measure what researchers claim
they measure.

The purpose of this paper is to address this gap in the
literature by providing a comprehensive study of liquidity
measures. We run ‘‘horseraces’’ of all the widely used
proxies for liquidity, plus three new proxies for effective
and realized spread, and nine new proxies for price
impact. We use multiple liquidity benchmarks, two
high-frequency data sets (TAQ and Rule 605 data), multi-
ple performance metrics, and a long sample period that
includes the decimals regime.

We find a close association between many of the
measures and actual transaction costs. Some measures are
able to precisely estimate the magnitude of effective and
realized spreads and many are highly correlated with both
spreads and price impact. We can safely assert that the
literature has generally not been mistaken in the assump-
tion that liquidity proxies measure liquidity. The new
measures we introduce in this paper consistently win a
majority of the effective/realized spread horseraces. A
measure commonly used in the literature, Pastor and
Stambaugh’s (2003) Gamma, is clearly dominated by
other measures while the widely used Amihud (2002)
measure is a good proxy for price impact.

The paper is organized as follows. Section 2 discusses
the empirical design of the paper. In Section 3 we develop
the high-frequency liquidity benchmarks used in the
horserace and in Sections 4 and 5 we develop the low-
frequency spread proxies and price impact proxies used in
the horserace. Section 6 describes the data sets and
methodology. Section 7 presents the horserace results.
Section 8 concludes the paper.
1 BBO means the best bid and offer. It is the highest bid and lowest

ask available for a given stock at a moment in time.
2. Empirical design

Our basic hypothesis is that useful monthly and annual
liquidity measures can be constructed from low-fre-
quency (daily) stock returns and volume data, giving
researchers an access to liquidity measures over a long
price history and in many markets. The US daily stock
returns and volume data are available from the Center for
Research in Security Prices (CRSP) covering NYSE/AMEX
firms from 1926 to the present and NASDAQ firms from
1983 to the present. A wide variety of vendors provide
daily stock returns and volume data for international
equity markets. For example, Thomson Financial’s Data-
stream provides daily stock returns and volumes covering
firms in more than 60 countries from 1994 to the present
and daily stock returns for several developed markets
going back to the early 1970s.

These tests should be of interest to a broad spectrum of
empirical research in financial economics. In the asset
pricing literature, Chordia, Roll, and Subrahmanyam
(2000) show that various spread measures vary system-
atically. Goyenko (2006) shows that various spread
measures are priced. Sadka (2006), Acharya and Pedersen
(2005), Pastor and Stambaugh (2003), and Watanabe and
Watanabe (2006) show that various price impact mea-
sures are priced. Fujimoto (2003), Korajczyk and Sadka
(2008), Hasbrouck (2009), and others test the pricing of
both spread and price impact measures in the US while
Bekaert, Harvey, and Lundblad (2007) test the measures in
emerging markets where liquidity concerns may be more
pronounced. All of these studies use monthly liquidity
estimates. Reliable monthly spread and price impact
measures going back in time and/or across countries are
needed to determine if these asset pricing relationships
hold up. In the market efficiency literature, De Bondt and
Thaler (1985), Jegadeesh and Titman (1993, 2001), Chan,
Jegadeesh, and Lakonishok (1996), Rouwenhorst (1998),
and many others have found monthly trading strategies
that appear to generate significant abnormal returns. Yet,
Chordia, Goyal, Sadka, Sadka, and Shivakumar (2008)
show that one of the oldest trading strategies in the
literature, the post earnings announcement drift, cannot
produce returns greater than the Keim and Madhavan
(1997) measures. Clearly liquidity measures over time
and/or across countries are needed in order to determine
if these trading strategies are truly profitable net of a
relatively precise measure of cost of trading.

Finally there is a growing need in corporate finance
research for useful monthly liquidity measures. Kalev,
Pham, and Steen (2003), Dennis and Strickland (2003),
Cao, Field, and Hanka (2004), Lipson and Mortal (2004a),
Schrand and Verrecchia (2004), Lesmond, O’Connor, and
Senbet (2008), and many others examine the impact of
corporate finance events on stock liquidity. Helfin and
Shaw (2000), Lipson and Mortal (2004b), Lerner and
Schoar (2004), and many others examine the influence of
liquidity on capital structure, security issuance form, and
other corporate finance decisions. Liquidity measures over
a longer period of time would expand the potential
sample size of this literature. Liquidity measures across
many additional countries would greatly extend the
potential diversity of international corporate finance
environments that this literature could analyze.

To determine which liquidity measures are best, we
compare proxies calculated from low-frequency data to
sophisticated benchmarks of liquidity calculated from two
high-frequency data sets using time-series correlations,
cross-sectional correlations, and prediction errors. Speci-
fically, we compare spread proxies to effective and
realized spreads and we compare price impact proxies to
two price impact benchmarks. All four of these bench-
marks are calculated using the NYSE’s Trade and Quote
(TAQ) data set from 1993 to 2005. Our monthly bench-
marks are computed as monthly averages based on every
trade and corresponding BBO1 quote over the month and
our annual benchmarks are computed as annual averages
based on every trade and corresponding BBO quote over
the year. We also compare spread proxies to the effective
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spread for marketable orders2 and compare price impact
proxies to the price impact across order sizes.3 Both of
these benchmarks are calculated using data disclosed
under Securities and Exchange Commission (SEC) Rule
605 of Regulation NMS (formerly Regulation 11Ac1-5)
from October 2001 to December 2005. Rule 605 requires
that all exchanges and other market centers disclose
detailed order-based performance statistics by stock,
order type, and order size, providing a cross-check to the
TAQ based results.

Our tests consist of running monthly and annual
horseraces between 12 spread proxies and 12 price impact
proxies, gauging their abilities to match the salient
features of our high-frequency-based benchmarks. While
some contestants are well established in the literature,
many are being tested for the first time. The new spread
proxies (described in detail below) are: ‘‘Effective Tick,’’
and ‘‘Effective Tick2,’’ developed jointly by this paper and
Holden (2009); ‘‘Holden’’ from Holden (2009); and ‘‘LOT
Y-split’’ developed by this paper. The other spread proxies
from the previous literature are: ‘‘Roll’’ from Roll
(1984); ‘‘Gibbs’’ from Hasbrouck (2004); ‘‘LOT Mixed,’’
‘‘Zeros,’’ and ‘‘Zeros2’’ from Lesmond, Ogden, and Trzcinka
(1999); ‘‘Amihud’’ from Amihud (2002); ‘‘Pastor and
Stambaugh’’ from Pastor and Stambaugh (2003); and
finally ‘‘Amivest Liquidity.’’4 The latter three measures are
also tested on price impact dimension. The other nine
price impact contestants (also described below) are
developed by this paper as extensions of the Amihud
measure.

Our first performance metric is the average cross-
sectional correlation based on individual firms between
the low-frequency liquidity proxy and the high-frequency
liquidity benchmark (effective spread, realized spread, or
one of the price impact benchmarks). Our second
performance metric is the time-series correlation based
on an equally weighted portfolio between the liquidity
proxy and the liquidity benchmark. Both of these
performance metrics are most relevant for asset pricing
purposes, where the magnitude of the correlation,
not the scale of the low-frequency proxy, matters. Our
third and fourth performance metrics are the prediction
error between the liquidity proxy and the liquidity
benchmark as measured by mean bias and the root
mean squared error, respectively. These metrics are
most relevant for market efficiency and corporate finance
tests, where the scale of the proxy does matter as one
wishes to subtract a correctly scaled proxy for transaction
costs.

Hasbrouck (2009) runs annual tests between four
effective cost measures, comparing each to effective
2 Marketable orders are a combination of market orders and

marketable limit orders.
3 Defined as the difference in the effective spread between large and

small orders divided by the difference in the average share size between

large and small orders.
4 The Amihud, Pastor and Stambaugh, and Amivest measures are

perhaps more naturally thought of as price impact measures, but the use

of these measures in the literature has been more broadly and loosely

justified. Therefore, we test these measures relative to both effective

spread and price impact benchmarks.
spread and price impact computed from TAQ data for
the 1993 to 2005 period. Among the measures he tests,
Gibbs dominates as a proxy for annual effective spread
and Illiquidity dominates as a proxy for annual price
impact.5 Using three annual measures, Lesmond, Ogden,
and Trzcinka (1999) find that LOT dominates Roll and
Zeros. Lesmond (2005) runs quarterly horseraces between
five liquidity measures for 23 emerging countries, and
finds that LOT dominates Roll, Illiquidity, Liquidity, and
Turnover.

We generally conclude that liquidity measures based
on daily data provide good measures of high-frequency
transaction cost benchmarks (i.e., liquidity measures do
measure liquidity). In the monthly and annual effective
and realized spread horseraces, we find that Holden,
Effective Tick, and LOT Y-split are the best overall. We also
find that in more recent years, during the decimals
regime, the performance of all measures deteriorates with
the exception of Zeros and the Amihud measures. In the
price impact horseraces, the new class of price impact
measures introduced in this paper either marginally
dominate the Amihud measure or is insignificantly
different from it, depending on the benchmark. The new
class of price impact measures is also able to capture the
magnitude of the special Rule 605 version of price impact.
Pastor and Stambaugh’s Gamma and Amivest’s Liquidity
are never in the winning group of any horserace and have
very low association with the six liquidity benchmarks
analyzed.
3. High-frequency liquidity benchmarks

3.1. Spread benchmarks

We analyze three spread benchmarks. Our first spread
benchmark is the effective spread as calculated from the
high-frequency TAQ database. Specifically, for a given
stock, the TAQ effective spread on the kth trade is defined
as

Effective Spread ðTAQ Þk ¼ 2 � j lnðPkÞ � lnðMkÞj, (1)

where Pk is the price of the kth trade and Mk is the
midpoint of the consolidated BBO prevailing at the time of

the kth trade. Aggregating over a time interval i (either a
month or a year), a stock’s Effective Spread (TAQ)i is the
dollar-volume-weighted average of Effective Spread
(TAQ)k computed over all trades in time interval i.

Our second spread benchmark is the realized spread
from Huang and Stoll (1996), which is the temporary
component of the effective spread. Specifically, for a given
5 Hasbrouck extends his basic model to include a latent common

liquidity factor for a subsample of stocks. He also estimates his Gibbs

measure for all common NYSE/AMEX/NASDAQ stocks from 1927 to 2005

and tests whether liquidity is a priced risk factor.
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stock, the TAQ realized spread on the kth trade is defined
as

Realized Spread ðTAQ Þk

¼
2 � ðlnðPkÞ � lnðPkþ5ÞÞ when the kth trade is a buy

2 � ðlnðPkþ5Þ � lnðPkÞÞ when the kth trade is a sell;

(

(2)

where P(k+5) is the price of trade five-minutes after the kth
trade. The trades are signed according to the Lee and
Ready (1991) algorithm. Aggregating over a time interval i

(either a month or a year), a stock’s Realized Spread (TAQ)k

is the dollar-volume-weighted average of Realized Spread
(TAQ)k computed over all trades in time interval i.

Our third spread benchmark is the effective spread as
aggregated from the Rule 605 database. Specifically, for a
given stock, the Rule 605 dollar effective spread based on
the trade generated by the kth order is defined as

$Effective Spread ð605Þk

¼
2 � ðPk �mkÞ for marketable buys

2 � ðmk � PkÞ for marketable sells;

(
(3)

where mk is the midpoint of the consolidated BBO
prevailing at the time of receipt of the kth order at the
exchange.6 Aggregating over month i, a stock’s Effective
Spread (605)i is the share-volume-weighted average of
$Effective Spread (605)k computed over all market centers
(spanning all trades) in month i divided by P̄i, the average
price in month i.

In principle, Effective Spread (605)i should be an
improvement over Effective Spread (TAQ)i, as each market
center constructs their Rule 605 figures from order data,
which are more refined than trade and quote data for
several reasons. First, the Rule 605 midpoint is based on
an order’s time of receipt, whereas a TAQ midpoint is based
on the trade’s time of execution—an order’s time of
receipt is a closer proxy to the trader’s information set at
the time of order submission. Second, there is no
confusion in the Rule 605 data about buys vs. sells or
about marketable orders vs. non-marketable orders
whereas Lee and Radhakrishna (2000) report that the
Lee and Ready (1991) method commonly used with TAQ
data incorrectly classifies 24% of inside-the-spread trades
that have a clear trade initiator. Third, there is no
confusion in the Rule 605 data when a marketable buy
is crossed with a marketable sell. Lee and Radhakrishna
(2000) find that 40% of the trades in their NYSE Trades,
Orders, Reports, and Quotes (TORQ) sample are ‘‘nondir-
ectional’’ trades, where a marketable buy and marketable
sell are crossed. The Rule 605 data correctly treats this
case as two marketable executions (both a marketable buy
execution and a marketable sell execution). By contrast,
users of TAQ data cannot distinguish nondirectional trades
vs. directional trades and usually treat this case as a single
6 Marketable buys are market buy orders and marketable limit buy

orders. Marketable sells are market sell orders and marketable limit sell

orders. Effective spreads are not reported for non-marketable limit

orders in the 605 data.
execution.7 Accordingly, the Rule 605 data provide a
useful cross-check to the TAQ-based results; however, the
Rule 605 data are only available from mid-2001, so the
comparison is limited to only 51 months in our sample.

3.2. Price impact benchmarks

Based upon the literature, we analyze three different
price impact benchmarks. A static version of price impact
is the slope of the price function at a moment in time.
Essentially, this is the cost of demanding additional
instantaneous liquidity and can be thought of as the first
derivative of the effective spread with respect to order
size. Our first price impact benchmark uses two (aggre-
gated) points on this curve to measure the slope.
Specifically, for a given stock, the static price impact
based on Rule 605 data over time interval i is

Static Price Impact ð605Þi

¼

ð$Effective Spread ð605ÞBig Orders;i=P̄iÞ

�ð$Effective Spread ð605ÞSmall Orders;i=P̄iÞ

2
4

3
5

=
ðAve Trade Size ð605ÞBig Orders;iÞ

�ðAve Trade Size ð605ÞSmall Orders;iÞ

" #
, (4)

where Big Orders, i is the set of all orders in the range of
2000–9999 shares that execute in time interval i and
small Orders, i is the set of all orders in the range of
100–499 shares that execute in time interval i.

Our second price impact benchmark introduces a time
dimension that is not present in Static Price Impact. Five-
minute price impact measures the derivative of the cost of
demanding a certain amount of liquidity over five minutes
which may be very different from the analogous curve for
demanding the same amount of liquidity immediately. In
constructing this measure, we follow Hasbrouck (2009)
and calculate the price impact as the slope coefficient
l(TAQ) of the regression

rn ¼ lðTAQ Þ � Sn þ un, (5)

where for the nth five-minute period,8 rn is the stock
return, Sn is the signed square-root dollar volume, that is,

Sn ¼
P

ksignðvknÞ

ffiffiffiffiffiffiffiffiffiffi
vkn

�� ��q
, vkn is the signed dollar volume of

the kth trade in the nth five-minute period, and un is the
error term.

Our third price impact benchmark focuses on the
change in quote midpoint after a signed trade. Price
impact is commonly defined as the increase (decrease) in
the midpoint over a five-minute interval beginning at the
time of the buyer- (seller-) initiated transaction. This is the
permanent price change of a given transaction, or
equivalently, the permanent component of the effective
include block trades. The SEC is therefore an imperfect monitor of data

quality. For more discussion of these issues, see Boehmer, Jennings, and

Wei (2003).
8 We also tested a 15-minute interval with similar results, suggest-

ing that our results are independent of the time interval over which we

aggregate the data.



ARTICLE IN PRESS

R.Y. Goyenko et al. / Journal of Financial Economics 92 (2009) 153–181 157
spread. Specifically, for a given stock, the TAQ five-minute
price impact aggregated over a time interval i is

5-Minute Price Impact ðTAQ Þk

¼
2 � ðlnðMkþ5Þ � lnðMkÞÞ when the kth trade is a buy

2 � ðlnðMkÞ � lnðMkþ5ÞÞ when the kth trade is a sell;

(

(6)

where Mk+5 is the midpoint of the consolidated BBO
prevailing five minutes after the kth trade, and Mk is the
midpoint prevailing at the time of the kth trade. We follow
the Lee and Ready (1991) algorithm to identify buy and
sell transactions. For a given stock aggregated over a time
interval i (either a month or a year), the 5-Minute Price
Impact (TAQ)k is the dollar-volume-weighted average of
5-Minute Price Impact (TAQ)k computed over all trades in
time interval i.

4. Low-frequency spread proxies

Nine low-frequency spread proxies are explained
below. For each measure, we require that the measure
always produce a numerical result.9

4.1. Roll

Roll (1984) develops an estimator of the effective
spread based on the serial covariance of the change in
price as follows. Let Vt be the unobservable fundamental
value of the stock on day t. Assume that it evolves as

Vt ¼ Vt�1 þ et , (7)

where et is the mean-zero, serially uncorrelated public
information shock on day t.

Next, let Pt be the last observed trade price on day t.
Assume it is determined by

Pt ¼ Vt þ
1
2SQt , (8)

where S is the effective spread and Qt is a buy/sell
indicator for the last trade that equals +1 for a buy and �1
for a sell. Assume that Qt is equally likely to be +1 or �1, is
serially uncorrelated, and is independent of et. Taking the
first difference of Eq. (8) and combining it with Eq. (7)
yields

DPt ¼
1
2SDQt þ et , (9)

where D is the change operator. Given this setup, Roll
shows that the serial covariance is

CovðDPt ;DPt�1Þ ¼
1
4S2, (10)

or equivalently

S ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CovðDPt ;DPt�1Þ

p
. (11)

When the sample serial covariance is positive, the
formula above is undefined and so we substitute a default
numerical value of zero. We therefore use a modified
9 If a measure cannot be computed we substitute a default value.

Our results are not sensitive to the default value selected.
version of the Roll estimator:

Roll ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CovðDPt ;DPt�1Þ

p
When CovðDPt ;DPt�1Þo0

0 When CovðDPt ;DPt�1ÞX0

(
.

(12)

4.2. Effective tick

Holden (2009) and this paper jointly develop a proxy of
the effective spread based on observable price cluster-
ing.10 Based on the negotiation cost theory of Harris
(1991), we assume that trade prices are clustered in order
to minimize negotiation costs between potential traders.
Let St be the realization of the effective spread at the
closing trade of day t. Assume that the realization of the
spread on the closing trade of day is randomly drawn from
a set of possible spreads sj; j ¼ 1;2; . . . ; J with correspond-
ing probabilities gj; j ¼ 1;2; . . . ; J. By convention, the
possible effective spreads s1 s2,ysJ are ordered from
smallest to largest. For example on a $1

8 price grid, St is
modeled as having a probability g1 of s1 ¼ $

1
8 spread, g2 of

s2 ¼ $
1
4 spread, g3 of s3 ¼ $

1
2 spread, and g4 of s4 ¼ $1

spread.
Following the intuition of Christie and Schultz (1994),

we assume that price clustering is completely determined
by spread size. For example, if the spread is $1

4, the model
assumes that the bid and ask prices employ only even
quarters. The quote could be $251

4 bid, $251
2 offered, but

never $253
8 bid, $255

8 offered. Thus, if odd-eighth transac-
tion prices are observed, one infers that the spread must
be $1

8. This implies that the simple frequency with which
closing prices occur in particular price clusters can be
used to estimate the spread probabilities ĝj; j ¼ 1;2; . . . ; J.
For example on a $1

8 fractional price grid, the frequency
with which trades occur in four, mutually exclusive price
sets (odd 1

8 s;odd 1
4 s;odd 1

2 s; and whole dollars) can be
used to estimate the probability of a $1

8 spread, $1
4 spread,

$1
2 spread, and a $1 spread. Similarly for a decimal price

grid, the frequency with which trades occur in five,
mutually exclusive sets (off pennies, off nickels, off dimes,
off half-dollars, and whole dollars) can be used to estimate
the probability of a penny spread, nickel spread, dime
spread, quarter spread, and whole dollar spread.

Let Nj be the number of trades on prices corresponding
to the jth spread ðj ¼ 1;2; . . . ; JÞ using only positive-
volume days in the time interval. In the $1

8 price grid
example (where J ¼ 4), N1 through N4 are the number of
trades on odd 1

8 prices, the number of trades on odd 1
4

prices, the number of trades on odd 1
2 prices, and the

number of trades on whole dollar prices, respectively.
Let Fj be the probabilities of trades on prices corre-

sponding to the jth spread ðj ¼ 1;2; . . . ; JÞ: These empirical
probabilities are computed as

Fj ¼
NjPJ
j¼1Nj

for j ¼ 1;2; . . . ; J. (13)
10 Holden (2009) also develops and tests additional versions of the

Effective Tick measure.
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Let Uj be the unconstrained probability of the jth spread
ðj ¼ 1;2; . . . ; JÞ. The unconstrained probability of the
effective spread is

Uj ¼

2Fj; j ¼ 1

2Fj � Fj�1; j ¼ 2;3; . . . ; J � 1

Fj � Fj�1; j ¼ J:

8><
>: (14)

The effective tick model directly assumes price cluster-
ing (i.e., a higher frequency on rounder increments).
However, in small samples it is possible that reverse price
clustering may be realized (i.e., a lower frequency on
rounder increments). Reverse price clustering uninten-
tionally causes the unconstrained probability of one or
more effective spread sizes to go above one or below zero.
Thus, constraints are added to generate proper probabil-
ities. Let ĝj be the constrained probability of the jth spread
ðj ¼ 1;2; . . . ; JÞ. It is computed in order from smallest to
largest as follows:

ĝj ¼

Min½MaxfUj;0g;1�; j ¼ 1

Min MaxfUj;0g;1�
Pj�1

k¼1

ĝk

" #
; j ¼ 2;3; . . . ; J:

8>><
>>: (15)

Finally, the effective tick measure is simply a prob-
ability-weighted average of each effective spread size
divided by P̄i, the average price in time interval i

Effective Tick ¼

PJ
j¼1ĝjsj

P̄i

. (16)

A second version, called Effective Tick2, is otherwise the
same except that it uses the daily prices from all days,
rather than just positive-volume days only. The difference
between the two measures depends on the informative-
ness of the no trade prices.

4.3. Holden

Holden (2009) develops a model that uses both serial
correlation (like the Roll measure) and price clustering
PrðPt ; Ptþ1; Ptþ2jm; g1; g2; SH; ē;se; lÞ ¼
X

ðHt ;Htþ1 ;Htþ2Þ2H

PrðCtÞ � PrðCtþ1Þ � PrðCtþ2Þ � PrðHtjCtÞ � PrðHtþ1jCtþ1Þ � PrðHtþ2jCtþ2Þ

�nðPtþ1 � Htþ1 � ðPt � ð1� lÞHtÞÞ � nðPtþ2 � Htþ2 � ðPtþ1 � ð1� lÞHtþ1ÞÞ

( )
,

(19)

11 This component also includes any liquidity provider rents due to

market power or price discreteness.
12 For example, suppose that the price Pt ¼ $251

8, which is an odd-

eighth that corresponds to price cluster Ct ¼ 1. For this price cluster the

only feasible spread is St ¼ $1
8. Thus, there are only two feasible values of

the signed half-spreads Ht 2 f$ 1
16;�$

1
16g: Similarly, Ptþ1 and Ptþ2 imply the

feasible values of the signed half-spreads Htþ1 and Htþ2. Taking all

combinations of the feasible values on each day yields the set of feasible

half-spread triplets.
(like Effective Tick) to estimate the effective spread.
Indeed, the Holden model formally nests both the Roll
model and the Effective Tick model as special cases. His
model is based on modifying the model of Huang and
Stoll (1997). Huang and Stoll develop a generalized
model of the components of the bid–ask spread. A by-
product of the Holden model is a two-way decomposition
of the bid–ask spread as estimated from low-frequency
data.

Holden begins by modifying the Huang and Stoll model
to account for changing spreads linked to price clustering.
Just like the Effective Tick model above, he specifies a
random probability of jumping each period among multi-
ple spreads that are linked price cluster regimes.
Next, he derives a price change process that is a natural
extension of Eq. (9) above

DPt ¼
1
2StQt � ð1� lÞ12St�1Qt�1 þ et , (17)

where the effective spread St is allowed to change each
day and l is the percentage of the half-spread attributable
to the sum of adverse selection and inventory holding
costs. Conversely, 1�l is the percentage of the half-spread
attributable to order processing costs.11 The public
information shock et is assumed to be normally distrib-
uted with mean ē and standard deviation se.

Let m be the probability of a trading day and 1� m be
the probability of a non-trading day. Consider a $1

8 price
grid where St has a probability g1 of s1 ¼ $

1
8 spread, g2 of

s2 ¼ $
1
4 spread, g3 of s3 ¼ $

1
2 spread, and g4 of s4 ¼ $1

spread. Of course, the spread probabilities must sum to
one:

PJ
j¼1gj ¼ 1. The Holden spread proxy is just the

weighted-average of the possible spreads:

Holden � SH ¼
XJ

j¼1

gjsj. (18)

Define the variable Ct as the observable price cluster on
day t. Specifically, on a zero-volume day, let Ct ¼ 0: On a
positive-volume day, let clusters Ct ¼ 1,2,3, and 4 corre-

spond to when the trade price is on odd 1
8 s; odd 1

4 s;

odd 1
2 s, and whole dollars, respectively. Define Q̂ t as a buy/

sell/zero volume indicator on day d that equals +1 for a
buy, �1 for a sell, and zero for a zero-volume day. Define

the unobserved signed half-spread on day t as Ht ¼
1
2StQ̂ t :

Considering all spread and indicator combinations, there
are nine possible values of the signed half-spread Ht:

$1
2; $

1
4; $

1
8; $

1
16; $0;�$ 1

16;�$
1
8;�$

1
4;�$

1
2.

For three successive trading days we observe a price
triplet ðPt ;Ptþ1; Ptþ2Þ, which corresponds to a price cluster
triplet ðCt ;Ctþ1;Ctþ2Þ. Define H as the set of all half-spread
triplets ðHt ;Htþ1;Htþ2Þ that are feasible given the observed
price cluster triplet.12 For a given a set of parameter values
ðm; g1; g2; SH; ē;se;lÞ; Holden calculates the likelihood of
the price triplet
where n( ) is the normal density with mean ē and standard
deviation se. Using three prices at a time allows the serial
correlation of the price changes to be picked up, but
avoids the combinatoric explosion of feasible half-spread
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combinations that would result if all observations were
used at the same time.

Taking the log of Eq. (19), the likelihood function is the
sum of the log likelihoods of all price triplets in the time
period of aggregation

XT�2

t¼1

LnðPrðPt ; Ptþ1; Ptþ2jm; g1; g2; SH ; ē;se; lÞÞ, (20)

where T is the number of days in the time period of
aggregation. The likelihood function is maximized by
choice of the parameters m; g1; g2; SH ; ē;se; l subject to the
constraints that g1; g2; g3; g4;m; SH;se; and l are greater
than or equal to zero and the constraints that
g1; g2; g3; g4;m; and l are less than or equal to one.13

4.4. Gibbs

Hasbrouck (2004) introduces a Gibbs sampler estima-
tion of the Roll model using prices from all days.
Hasbrouck assumes that the public information shock et

in the Roll model is normally distributed with mean of
zero and variance of s2

e : He denotes the half-spread in the
Roll model as c � 1

2S.
Hasbrouck uses the Gibbs sampler to numerically

estimate the model parameters fc;s2
e g, the latent buy/

sell/no-trade indicators Q ¼ fQ1;Q2; . . . ;QTg; and the
latent ‘‘efficient prices’’ V ¼ fV1;V2; . . . ;VTg, where T is
the number of days in the time interval.14

4.5. LOT

Lesmond, Ogden, and Trzcinka (1999) develop an
estimator of the effective spread based on the assumption
of informed trading on non-zero-return days and the
absence of informed trading on zero-return days. A
standard ‘‘market model’’ relationship holds on non-
zero-return days, but a flat horizontal segment applies
on zero-return days.

The LOT model assumes that the unobserved ‘‘true
return’’ R�jt of a stock j on day t is given by

R�jt ¼ bjRmt þ �jt , (21)

where bj is the sensitivity of stock j to the market return
Rmt on day t and �jt is a public information shock on day t.
They assume that �jt is normally distributed with mean
zero and variance s2

j . Let a1jp0 be the percent transaction
cost of selling stock j and a2jX0 be the percent transaction
cost of buying stock j. Then the observed return Rjt on a
13 The constraints g3X0 and g3p1 can be expressed as a function of

the parameters to be estimated ðm; g1; g2; SH ; ē;se ;lÞ as: 2½1� S� g1ð
7
8Þ �

g2ð
3
4Þ�X0 and 2½1� S� g1ð

7
8Þ � g2ð

3
4Þ�p1, respectively. Similarly, the con-

straints g4X0 and g4p1 can be expressed as: 1� g1 � g2 � 2½1� S�

g1ð
7
8Þ � g2ð

3
4Þ�X0 and 1� g1 � g2 � 2 1� S� g1ð

7
8Þ � g2ð

3
4Þ

� 	
p1, respec-

tively.
14 Hasbrouck generously provides the programming code to com-

pute the Gibbs estimator on his Web site. We directly use his code

without modification of the main routines for both monthly and annual

computations.
stock j is given by

Rjt ¼ R�jt � a1j when R�jtoa1j

Rjt ¼ R�jt when a1joR�jtoa2j

Rjt ¼ R�jt � a2j when a2joR�jt . (22)

The LOT liquidity measure is simply the difference
between the percent buying cost and the percent selling
cost:

LOT ¼ aj2 � aj1. (23)

Lesmond, Ogden, and Trzcinka develop the following
maximum likelihood estimator of the model’s para-
meters:

Lða1j;a2j;bj;sjjRjt ;RmtÞ

¼
Y

1

1

sj
n

Rjt þ a1j � bjRmt

sj

� �

�
Y

0

N
a2j � bjRmt

sj

� �
� N

a1j � bjRmt

sj

� �� �

�
Y

2

1

sj
n

Rjt þ a2j � bjRmt

sj

� �

S:T: aj1 � 0;aj2 	 0;bjX0;sjX0, (24)

where N( ) is the cumulative normal distribution.
A very important issue concerning LOT is the definition

of the three regions over which the estimation is done.
The original LOT (1999) measure, which we call LOT
Mixed, distinguishes the three regions based on both the
X-variable and the Y-variable. That is, region 0 is Rjt ¼ 0,
region 1 is Rjta0 and Rmt40, and region 2 is Rjta0 and
Rmto0. In this paper we develop an alternative measure,
LOT Y-split, that breaks out the three regions based on the
Y-variable. That is, region 0 is Rjt ¼ 0, region 1 is Rjt40 and
region 2 is Rjto0. Interestingly, LOT Y-split and LOT Mixed
sometimes produce very different results, so it is worth
tracking both of them.

4.6. Zeros

Lesmond, Ogden, and Trzcinka (1999) introduce the
proportion of days with zero returns as a proxy for
liquidity. Two key arguments support this measure. First,
stocks with lower liquidity are more likely to have zero-
volume days and thus are more likely to have zero-return
days. Second, stocks with higher transaction costs have
less private information acquisition (because it is more
difficult to overcome higher transaction costs), and thus,
even on positive volume days, they are more likely to have
no-information-revelation, zero-return days.

Lesmond, Ogden, and Trzcinka define the proportion of
days with zero returns as

Zeros ¼ ð# of days with zero returnsÞ=T, (25)

where T is the number of trading days in a month. An
alternative version of this measure, Zeros2, is defined as

Zeros2 ¼ ð# of positive-volume days with zero returnÞ=T.

(26)

For emerging markets, the Zeros measure has been used
by Bekaert, Harvey, and Lundblad (2007).
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4.7. Other proxies

Three additional proxies are tested in the spread
horseraces: (1) ‘‘Illiquidity’’ from Amihud (2002), (2)
‘‘Gamma’’ from Pastor and Stambaugh (2003), and (3)
the (Amivest) ‘‘Liquidity.’’ These measures are intended to
proxy for price impact. Therefore, they are tested only for
correlation with effective and realized spreads. All three
are described below.

5. Low-frequency price impact proxies

Next, we explain 12 low-frequency price impact
proxies. As before, we require that each measure always
produce a numerical result.

5.1. Amihud

Amihud (2002) develops a price impact measure that
captures the ‘‘daily price response associated with one
dollar of trading volume.’’ Specifically, he uses the ratio

Illiquidity ¼ Average
jrtj

Volumet

� �
, (27)

where rt is the stock return on day t and Volumet is the
dollar volume on day t. The average is calculated over all
positive-volume days, since the ratio is undefined for
zero-volume days.

5.2. Extended Amihud proxies

We develop a new class of price impact proxies by
extending the Amihud measure. We start with the
Amihud base model. We then decompose the total return
in the base model numerator into a liquidity component
and a non-liquidity component. This is done by dividing
both sides of the modified Huang and Stoll model in Eq.
(17) by Pt�1 to obtain

rt ¼

1
2StQt � ð1� lÞ12St�1Qt�1

Pt�1
þ

et

Pt�1
, (28)

where the first term on the right-hand side is the liquidity
component and the second term is the non-liquidity
component. 1

2StQt � ð1� lÞ12St�1Qt�1 is the signed effective
half-spread (which includes three components: adverse
selection, order processing, and inventory costs) at time t

minus the order processing component of the lagged
signed effective half-spread at t�1, and et is the mean-
zero, serially uncorrelated public information shock on
day t. This model includes the Glosten (1987) model as a
special case when inventory costs are zero. Substituting
Eq. (28) into Eq. (27), we get

Average

1
2StQt � ð1� lÞ12St�1Qt�1

Pt�1
þ

et

Pt�1

�����
�����

Volumet

0
BBBB@

1
CCCCA (29)

By assumption, the random variable et is independent of
the liquidity component. We therefore drop the non-
liquidity component to measure the liquidity costs asso-
ciated with one dollar of trading volume as

Average

1
2StQt � ð1� lÞ12St�1Qt�1

Pt�1

�����
�����

Volumet

0
BBBB@

1
CCCCA (30)

Essentially, this eliminates a noise term that is unrelated
to the variable of interest. The average numerator value is
close (at least in magnitude) to the percent effective half-
spread. Since we do not observe the numerator in low-
frequency data sets, we construct an extended Amihud
proxy for time interval i by using a spread proxy over time
interval i and the average daily dollar volume over the
same time interval as follows:

Extended Amihud Proxyi

¼
Spread Proxyi

Average Daily Dollar Volumei
, (31)

where the whole spread convention is used instead of the
half-spread convention. The original Amihud measure
computes the average of daily ratios, where each daily
ratio is absolute return/dollar volume. The extended
Amihud proxies use an alternative convention by comput-
ing the ratio of two averages. If we view the spread proxy
as representing the average daily spread over interval i,
then the ratio can be interpreted as the average daily
spread/average daily dollar volume.15

The equation above defines a class of price impact
proxies depending on which proxy for percent effective
spread is used. For example, one member of this class is
Roll Impact for time interval i, which uses the Roll
measure for time interval i and the average daily dollar
volume over time interval i as follows:

Roll Impacti

¼
Rolli

Average Daily Dollar Volumei
. (32)

We test nine versions of this class of price impact
measures based on nine proxies for percent effective
spread. The nine measures we test are: Roll Impact,
Effective Tick Impact, Effective Tick2 Impact, Holden
Impact, Gibbs Impact, LOT Mixed Impact, LOT Y-split
Impact, Zeros Impact, and Zeros2 Impact.

5.3. Pastor and Stambaugh

Pastor and Stambaugh (2003) develop a measure of
price impact called Gamma by running the regression

re
tþ1 ¼ yþ frt þ ðGammaÞsignðre

t ÞðVolumetÞ þ �t , (33)

where re
t is the stock’s excess return above the CRSP value-

weighted market return on day t and Volumet is the dollar
volume on day t. Intuitively, Gamma measures the reverse
of the previous day’s order flow shock. Gamma should
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have a negative sign. The larger the absolute value of
Gamma, then the larger the implied price impact.

5.4. Amivest liquidity

The Amivest Liquidity ratio is a measure of price
impact

Liquidity ¼ Average
Volumet

jrtj

� �
. (34)

The average is calculated over all non-zero-return days,
since the ratio is undefined for zero-return days. A larger
value of Liquidity implies a lower price impact. This
measure has been used by Cooper, Groth, and Avera
(1985), Amihud, Mendelson, and Lauterback (1997), Berk-
man and Eleswarapu (1998), and others.

6. Data

To compute our effective spread, realized spread, and
price impact benchmarks, we use two high-frequency
data sets. First, we use NYSE TAQ data from 1993 to 2005.
Because of the computational limits associated with some
of the measures, we select a random sample. Following
the methodology of Hasbrouck (2009), a stock must meet
five criteria to be eligible: (1) it is a common stock, (2) it is
present on the first and last TAQ master file for the year,
(3) it has NYSE, AMEX, or NASDAQ as the primary listing
exchange, (4) it does not change primary exchange, ticker
symbol, or CUSIP over the year, and (5) it is listed in CRSP.
We randomly select 400 stocks each year from the
universe of eligible stocks in 1993. Rolling forward, if
any of the 1993 selections is not eligible in 1994, we
randomly draw a replacement from the universe of
eligible stocks in 1994. We continue rolling forward in
likewise fashion over a 13-year span. Thus, we have 5,200
stock-years. We use the same set of stocks for the monthly
measures. We lose a small number of observations in
extremely illiquid stocks because of insufficient trades
(two or less) on positive-volume days to run the Bayesian
regression that is part of the Gibbs measure. This results in
62,100 stock-months from TAQ.

Second, we use data that are required to be disclosed
under Rule 605 of Regulation NMS (formerly Regulation
11Ac1-5) from October 2001 to December 2005. The data
are collected and manually assembled from the Transac-
tion Auditing Group, Inc. (www.tagaudit.com) from
October 2001 to December 2005. We use the same stocks
as above. Data on NYSE/AMEX firms are taken from their
respective market center statistics. Data on NASDAQ firms
are aggregated by volume-weighting the disclosed statis-
tics from the following market centers: Small Order
Execution System (SOES), all Electronic Communication
Networks (ECNs) (Archipelago (ARCA), Instinet (INET),
Island (ISLD), NexTrade (NTRD), Redibook (REDI)), and the
top 10 NASDAQ market makers16 (Schwab (SCHB), Brutt
(BRUT), Goldman Sachs (GSCO), Knight (NITE and TRIM),
16 The top 10 list is based on NASDAQ composite volume for the

month of March 2004 at www.nasdaqtrader.com.
GVR (GVRC), B-Trade (BTRD), Lehman Brothers (LEHM),
Credit Suisse First Boston (FBCO), Merrill Lynch (MLCO),
and J.P. Morgan (JPMS)).

To compute our low-frequency liquidity measures, we
use the Daily Stock database from CRSP over the same
time period. We notice that the analytic-formula proxies
(Roll, Effective Tick, Effective Tick2, Zeros, Zeros2, Illiquid-
ity, Gamma, and Liquidity) are fast to compute. By
contrast, the single measure, numerically iterated proxies
(Gibbs, LOT Mixed, and LOT Y-split) are slower to compute
as is the combination measure, Holden, which is the most
computationally intensive. In perspective, all low-fre-
quency proxies, with the exception of the Holden
measure, are faster to compute than their high-frequency
counterparts.

Table 1 provides summary descriptive statistics. Panel
A describes monthly spread benchmarks and proxies
calculated from 1993–2005 TAQ data. The high-frequency
benchmark, Effective Spread (TAQ), has a mean of 0.029
and a median of 0.016. Since the effective costs are
logarithmic, the mean corresponds to effective costs of
about 3%. Looking across the spreads proxies, we see that
Roll, Effective Tick, Effective Tick 2, Holden, Gibbs, and LOT
Y-split are approximately the same in magnitude as the
benchmark. LOT Mixed is approximately double the
benchmark. The rest of the low-frequency measures are
completely different in order of magnitude. Panel B
describes annual spread benchmarks and proxies, where
the picture about order of magnitude is essentially the
same.

Realized spread is the temporary component of
effective spread. Its mean corresponds to 1.5% which is
approximately half of the effective spread for monthly
data (Panel A). Effective Tick, Effective Tick 2, Holden, and
Gibbs are very close in magnitude to the realized spread.
The same pattern persists for annual data (Panel B).

Panel C of Table 1 describes monthly spread bench-
marks and proxies calculated from 10/2001–12/2005 Rule
605 data. Effective Spread (605) has a mean of 0.015 and a
median of 0.006. Again, the low-frequency proxies have
essentially the same magnitude relationships as in Panel
A. Compared to monthly TAQ effective spread in Panel A,
effective spread (605) is almost twice smaller in magni-
tude. This difference can be attributed to the following.
The TAQ effective spread is the percent dollar-volume-
weighted average spread for each month while the Rule
605 effective spread is the dollar share-weighted average
monthly spread reported by market centers normalized by
the average monthly price. Further, the TAQ effective
spread is obtained as the absolute value of the difference
between price and the BBO midpoint, while the Rule 605
effective spread is computed by market center as the
signed value, where buy and sell transactions are
identified by market makers.

Panel D of Table 1 describes monthly price impact
benchmarks and proxies calculated from 1993–2005 TAQ
data. The high-frequency benchmark, Lambda (TAQ), has a
mean of 130.425 and a median of 15.793, after multiplying
by 1,000,000. At its median value, the TAQ-based price
impact coefficient Lambda implies that a $10,000 buy
order would move the log price by approximately

http://www.tagaudit.com
http://www.nasdaqtrader.com
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Table 1
Descriptive statistics

The benchmarks Effective spread (TAQ), Realized spread (TAQ), Lambda (TAQ), and 5-Minute Price Impact (TAQ) are calculated from every trade and corresponding BBO quote in the NYSE TAQ database for a

sample firm-month or firm-year. Effective spread (TAQ) is the dollar-volume-weighted average of two times the absolute value of log price minus log midpoint. Realized spread (TAQ) is the dollar-volume-

weighted average of two times the log price minus log of the five-minutes-later price for buys and the negative of previous for sells. Lambda (TAQ) is the coefficient from regressing the stock return over a five-

minute interval on the signed square-root dollar-volume over the same interval with intercept omitted. 5-Minute Price Impact (TAQ) is the dollar-volume-weighted average of two times the log five-minutes-

later midpoint minus the log midpoint for buys and negative of previous for sells. Lambda (TAQ) is in (percent return)/(square root of dollars). The other three TAQ benchmarks are unitless. The benchmarks

Effective Spread (605) and Static Price Impact (605) are calculated from data required to be disclosed under SEC Rule 605 (formerly 11Ac1-5) for a sample firm-month. Effective spread (605) is the share-

weighted average of two times the price minus midpoint for buys and of two times the midpoint minus price for sells, then divided by the average price over the month or year. Static Price Impact (605) is dollar

effective spread for big orders divided by average price minus dollar effective spread for small orders divided by average price, then divided by the average trade size of big orders minus the average trade size of

small orders. Effective spread (605) is unitless. Static Price Impact (605) is in dollars/share. All spread proxies and price impact proxies are calculated from CRSP daily stock price and volume data for a sample

firm-month or firm-year. The spread proxies are: Roll from Roll (1984), Effective Tick and Effective Tick2 developed here and in Holden (2009), Holden from Holden (2009), Gibbs from Hasbrouck (2004), LOT

Mixed, Zeros, and Zeros2 from Lesmond, Odgen, and Trzcinka (1999), LOT Y-split developed here, Amihud from Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the Amivest

Liquidity ratio. The price impact proxies are: Roll Impact, Effective Tick Impact, Effective Tick2 Impact, Holden Impact, Gibbs Impact, LOT Mixed Impact, and LOT Y-split Impact developed here, Amihud from

Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The TAQ sample spans 1993–2005 inclusive and consists of 400 randomly selected stocks with annual

replacement of stocks that do not survive, resulting in 62,100 firm-months or 5,200 firm-years. The Rule 605 sample spans 10/2001 to 12/2005 inclusive and consists of 400 randomly selected stocks with

annual replacement of stocks that do not survive, resulting in 19,039 firm-months.

Spread benchmarks Spread proxies

Effective spread (TAQ) Effective spread (605) Realized spread (TAQ) Roll Effective Tick Effective Tick2 Holden Gibbs LOT Mixed LOT Y-split Zeros Zeros2

Panel A: Monthly, 1993–2005, using a TAQ benchmark

Average 0.029 – 0.015 0.027 0.017 0.016 0.018 0.018 0.056 0.023 0.143 0.127

Std dev 0.040 – 0.032 0.037 0.032 0.030 0.030 0.021 0.089 0.051 0.147 0.130

Min 0.0001 – �0.370 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Median 0.016 – 0.005 0.016 0.008 0.007 0.009 0.012 0.031 0.009 0.095 0.095

Max 0.896 – 1.320 0.906 0.929 0.949 0.917 0.673 1.000 1.000 0.909 0.909

Panel B: Annual, 1993–2005, using a TAQ benchmark

Average 0.026 – 0.014 0.025 0.013 0.013 0.014 0.014 0.074 0.027 0.145 0.128

Std dev 0.034 – 0.024 0.032 0.019 0.018 0.019 0.018 0.117 0.061 0.126 0.101

Min 0.0003 – �0.044 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Median 0.016 – 0.007 0.016 0.007 0.007 0.008 0.007 0.039 0.011 0.115 0.109

Max 0.672 – 0.808 0.327 0.289 0.340 0.269 0.190 1.787 1.119 0.917 0.653

Panel C: Monthly, 10/2001–12/2005, using a 605 benchmark

Average – 0.015 – 0.019 0.006 0.005 0.007 0.013 0.025 0.006 0.049 0.046

Std dev – 0.033 – 0.028 0.015 0.014 0.014 0.015 0.040 0.018 0.073 0.069

Min – 0.000 – 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Median – 0.006 – 0.012 0.002 0.002 0.003 0.009 0.014 0.000 0.000 0.000

Max – 0.948 – 0.906 0.425 0.447 0.482 0.393 1.000 0.581 0.667 0.667
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Price impact benchmarksa Price impact proxiesa

Lambda

(TAQ)

5 Minute Price

Impact (TAQ)

Static Price

Impact (605)

Roll

Impact

Effective Tick

Impact

Effective Tick2

Impact

Holden

Impact

Gibbs

Impact

LOT Mixed

Impact

LOT Y-split

Impact

Zeros

Impact

Zero2

Impact

Amihud Pastor and

Stambaugh

Amivest

Liquidity

Panel D: Monthly, 1993–2005, using a TAQ benchmark

Average 130.425 0.031 – 3.816 4.587 4.049 4.068 3.626 12.211 9.295 20.917 7.782 6.314 �0.179 639,355

Std dev 2446.202 0.038 – 57.617 154.809 147.568 93.306 75.851 288.448 284.875 305.990 102.754 91.957 10.129 155,561,102

Min �41544.120 0.000 – 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 �1508.411 0.000

Median 15.793 0.020 – 0.015 0.020 0.019 0.024 0.029 0.074 0.018 0.202 0.148 0.104 0.000 26.622

Max 398507 1.022 – 6978 32742 32742 16371 11399 42000 42000 38000 21000 14160 798 38,762,898,699

Panel E: Annual, 1993–2005, using a TAQ benchmark

Average 70.285 0.031 – 2.045 1.569 1.335 1.353 1.486 6.604 4.346 12.879 4.972 6.307 0.018 586,003

Std dev 300.430 0.031 – 17.937 25.274 22.932 13.734 14.257 87.651 70.645 191.552 31.360 46.973 0.292 41,202,127

Min �10943.480 0.002 – 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 �5.598 0.007

Median 15.535 0.021 – 0.015 0.015 0.015 0.017 0.014 0.089 0.023 0.237 0.236 0.148 0.000 36.563

Max 7655.088 0.414 – 834.616 1644.99 1504.080 581.405 578.151 5381.836 3826.47 11554.83 1424.65 1681.365 8.436 2,970,331,874

Panel F: Monthly, 10/2001–12/2005, using a 605 benchmark

Average – – 1.016 1.600 1.057 0.985 0.875 1.071 2.659 1.213 5.713 2.963 4.046 0.025 2,066,923

Std dev – – 31.278 19.639 28.910 39.373 12.177 15.198 40.269 27.799 125.983 20.595 66.740 3.446 280,924,448

Min – – �1491.101 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 �91.366 0.002

Median – – 0.326 0.003 0.002 0.002 0.004 0.012 0.013 0.000 0.000 0.000 0.034 0.000 94.631

Max – – 2407.128 1525.001 3590.67 5229.895 699.319 1372.41 3773.920 3255.19 15587.53 894.38 7245.073 408.992 38,762,898,699

Panel G: Observations classified by exchange listing

Data Total NYSE AMEX NASDAQ

Monthly TAQ, 1993–2005 62,100 15,536 4,431 42,133

Annual TAQ, 1993–2005 5,200 1,295 370 3,535

Monthly 605, 10/2001–12/2005 19,039 5,167 1,633 12,239

a All price impact benchmarks and proxies are multiplied by 1,000,000, except for Liquidity which is divided by 1,000,000 and 5-Minute Price Impact which is not scaled.
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18 We test all correlations in Tables 2–9 to see if they are statistically

different from zero at the 5% level of confidence and highlight the

correlations that are significant in boldface. For an estimated correlation
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10;000
p

� 16� 10�6
¼ 0:0016, i.e., 16 basis points. The

mean of the 5-Minute Price Impact (TAQ) benchmark
corresponds to 3% with a median of 2%. Looking at the
means of the price impact proxies, we see that none of the
proxies are of the same order of magnitude as Lambda
(TAQ) or 5-Minute Price Impact (TAQ). The same holds
true in Panel E for annual price impact proxies.

Panel F describes monthly price impact benchmarks
and proxies calculated from 10/2001–12/2005 Rule 605
data. Price Impact (605) has a mean of 1.016 and a median
of 0.326, after multiplying by 1,000,000.

Panel G breaks the firms down by exchange. Roughly
68% are listed on NASDAQ, 25% on the NYSE, and the rest
on AMEX. This breakdown is nearly the same as the
eligible universe of TAQ and Rule 605 stock symbols.

7. Results

7.1. Monthly/annual spread results

Table 2 provides monthly spread evidence. It compares
spread proxies calculated from daily prices and volumes
each month (e.g., using a maximum of 23 daily prices and
volumes per month) with monthly effective and realized
spread benchmarks calculated from the TAQ data (e.g., a
volume-weighted average of the effective/realized spread
of every trade and corresponding BBO quote over the
month). In the tables we highlight the winner of each race
by drawing a box around the best-performing measure (or
measures if there is a tie).

Panel A reports the average cross-sectional correlation
of each low-frequency spread proxy with the effective and
realized spreads calculated from TAQ. This is computed in
the spirit of Fama and MacBeth (1973) by: (1) calculating,
for each month, the cross-sectional correlation across all
400 firms, and then (2) calculating the average correlation
value over all 156 months. We find that six measures,
Effective Tick, Effective Tick2, Holden, Gibbs, LOT Mixed,
and LOT Y-split, have average cross-sectional correlations
greater than 0.6. The Holden measure has the highest
average cross-sectional correlation at 0.682. The cross-
sectional correlation with the realized spread is lower and
fluctuates around 0.4 across the same six measures.

We test whether the average cross-sectional correla-
tions are different from each other in Tables 2–8 by
running a t-test based on the time-series similar to
Fama–MacBeth.17 Specifically, we calculate the cross-
sectional correlation each period (month or year) and
then compute the pairwise difference in correlations
between two candidate measures. We assume that time
series of differences is i.i.d. over time, and test whether the
average correlation difference is different from zero.
Standard errors are adjusted for autocorrelation with a
Newey-West correction using four lags for monthly data
and three lags for annual data.

Table 2, Panel A reports that the correlations of Gibbs
and Holden with effective spread are insignificantly
different from each other and the remaining proxies are
17 We are grateful to an anonymous referee for this suggestion.
statistically significantly lower than Holden. Put differ-
ently, considering the measure with the highest correla-
tion, Holden, we find that Gibbs is inside of its 95%
confidence region and the remaining spread proxies are
outside. The same result holds for the realized spread.

Next, we form equally weighted portfolios across all
400 stocks in a given month. Specifically, we compute a
portfolio spread proxy in month i by taking the average of
that spread proxy over all 400 stocks in month i. Panel B
reports the time-series correlation over 156 months of
each low-frequency portfolio spread proxy with the
effective and realized spreads of an equally weighted
portfolio calculated from TAQ. Asset pricing researchers
may be especially interested in the time-series correla-
tions since so much of asset pricing research involves
forming portfolios and exploring co-movement over time.
It is worth noting that Panel B results may differ from
those in Panel A, not only because they are computed over
the time-series vs. across the cross-section, but also
because some measurement error that affects individual
stocks may be diversified away in portfolios. Consistent
with a diversification effect, we find relatively high time-
series correlations. Six measures, Roll, Effective Tick,
Effective Tick2, Holden, Gibbs, and LOT Y-split, have
time-series correlations greater than 0.9.

We test whether time-series correlations are statisti-
cally different from each other in Tables 2–9 using Fisher’s
Z-test. The Holden measure has the highest time-series
correlation at 0.951 and Effective Tick, Effective Tick2,
and LOT Y are in its 95% confidence interval (see Table 2,
Panel B). All of the time-series correlations significantly
different from zero are highlighted in boldface.18

Our spread proxies also do a good job in capturing time-
series variation in realized spread. The correlation is as high
as 0.972 for LOT Y with Effective Tick, Effective Tick2, and
Holden being in its 95% confidence interval. Roll and Gibbs,
which can be thought of as proxies for the realized spread
since the versions we estimate do not include an asym-
metric information component, do not do as well. Pastor
and Stambaugh’s Gamma and Amivest significantly under-
perform all other proxies in both Panels A and B.

To look at the consistency of the measures’ perfor-
mance, we break the time-series correlations down by
subperiods in Panel C. Specifically, we use the same
portfolio liquidity measures as above, but compute time-
series correlations for three subperiods that closely
correspond to minimum tick-size regimes. The subperiods
are 1993–1996, 1997–2000, and 2001–2005, which relate
to the minimum tick-size regimes of $1/8, $1/16, and
$0.01, respectively. Consistent with Panel B, the same six
measures, Roll, Effective Tick, Effective Tick2, Holden,
Gibbs, and LOT Y-split, do consistently well in each
subperiod in terms of correlation with effective spread.
All six measures have time-series correlations greater
s, Swinscow (1997, Ch. 11) gives the appropriate test statistic as t ¼

s
ffiffiffiffiffiffiffi
D�2
1�s

q
where D is the sample size.
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Table 2
Monthly spread proxies compared to TAQ benchmarks

The benchmarks Effective spread (TAQ) and Realized spread (TAQ) are calculated from every trade and corresponding BBO quote in the NYSE TAQ database for a sample firm-month. All spread proxies are

calculated from CRSP daily stock price and volume data for a sample firm-month. The spread proxies are: Roll from Roll (1984), Effective Tick and Effective Tick2 developed here and in Holden (2009), Holden

from Holden (2009), Gibbs from Hasbrouck (2004), LOT Mixed, Zeros, and Zeros2 from Lesmond, Odgen, and Trzcinka (1999), LOT Y-split developed here, Amihud from Amihud (2002), Pastor and Stambaugh

from Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The sample spans 1993–2005 inclusive and consists of 400 randomly selected stocks with annual replacement of stocks that do not survive,

resulting in 62,100 firm-months. Bold numbers are statistically significant at the 5% level. * means that the correlation is statistically significantly different at the 5% level from all other correlations in the same

row.
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19 We test all root mean squared errors generated by the liquidity

proxies in Tables 2, 3, 6, and 8 to see if they are statistically significant

using the U-statistic developed by Theil (1966). Here, if U2
¼ 1 then the

low-frequency liquidity proxy has no predictive power beyond just

assuming no deviation from the sample mean. If U2
¼ 0 ,then the low-

frequency liquidity proxy predicts perfectly. U2 has an F distribution

where the number of degrees of freedom for both the numerator and

denominator is the sample size.
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than 0.900 in 1993–1996, in the interval [0.663, 0.886] in
1997–2000, and greater than 0.86 in 2001–2005. It is
not clear why all six measures did worse during the
$1/16 years. Gibbs has the highest correlation in 1993–1996,
Effective Tick is the highest in 1997–2000, and Roll is the
highest in 2001–2005. While the measures based on the
price clustering do slightly worse in the third subperiod
compared to the first subperiod, the performance of the
Amihud measure moves in the opposite direction. Thus,
Amihud seems to represent the effective spread better in
the last subperiod, during the decimalization era, where it
achieves a correlation of 0.833. This might be associated
with a decrease in price clustering during the decimals
regime as a result of the majority of trading being done
automatically via computerized systems.

A slightly different picture emerges for correlations
with realized spread. Measures based on price clustering,
Effective Tick, Effective Tick2, and Holden, achieve the
highest correlation during decimalization, ranging be-
tween 0.933 and 0.956. LOT Mixed, which does not show
up as a winner so far, has the highest correlation with
realized spread, 0.96. Similar to effective spread, the
correlations are lower for all measures during the second
subperiod. The drop in correlations is very severe for Roll
and Gibbs.

We form decile portfolios stratified by firm size
(market capitalization) and by effective spread to check
the robustness of the measures. For firm size, we sort the
400 stocks each month by market capitalization, assigning
the first 40 stocks with the smallest size to Portfolio 1, and
so on. Each decile portfolio is equally weighted. Panel D
reports the time-series correlation of size decile portfolios
for both effective and realized spreads. Four measures do
quite well across the decile portfolios. Effective Tick,
Effective Tick2, Holden, and LOT Y-split have high and
statistically significant time-series correlations overall
with mildly lower correlations for larger size portfolios.
By contrast, Roll and Gibbs do very poorly with the larger
firms in Portfolios 7–10. Specifically, they obtain time-
series correlations of 0.4 or lower for effective spread and
negative but insignificant correlations for realized spread,
which appears to be a serious robustness problem. They
do much better with the small and medium-size firms in
Portfolios 1–6. All measures do much worse than their
own average with the largest firms in Portfolio 10.

Next, we form decile portfolios stratified by effective
spread in the same manner as above, assigning the 40
stocks with the lowest effective spread to Portfolio 1, and
so on. Each decile portfolio is equally weighted. Panel E
reports the time-series correlations of these decile
portfolios for both effective and realized spreads. Con-
sistent with Panel D, the same four measures, Effective
Tick, Effective Tick2, Holden, and LOT Y-split, do quite well
with high and statistically significant time-series correla-
tions overall and mildly lower correlations in lower
effective spread portfolios. By contrast, Roll and Gibbs
do very poorly in Portfolios 1–4. Specifically, they obtain
time-series correlations lower than 0.322 for effective
spread and lower than 0.161 for realized spread, which
continues to represent a serious robustness problem.
Undoubtedly, there is a great deal of overlap between
these low effective spread portfolios and the large size
portfolios. Roll and Gibbs do far better in Portfolios 6–10.
Nearly all measures do worse than their own average with
the lowest effective spread firms in Portfolio 1. It therefore
appears that large firms and firms with small effective
spreads are the most challenging firms for all low-
frequency spread proxies.

Finally, we calculate the prediction error between the
low-frequency spread proxies and effective spread as
calculated from TAQ. Panel F reports two performance
metrics: (1) mean bias (e.g., the difference between the
low-frequency mean and the high-frequency mean) and
(2) root mean squared error. The mean bias corresponds to
all 62,100 firm-months. The root mean squared error is
calculated every month and then averaged over 156
months. We exclude Zeros, Zeros2, Amihud, Pastor and
Stambaugh, and Amivest from these tests because they
are measured in different units than the effective spread.
We find that Roll, Effective Tick, Effective Tick2, Holden,
Gibbs, and LOT Y-split have relatively small biases
compared to the effective spread benchmark, ranging
from �0.002 to �0.013. However, all of these biases are
significantly different from zero based on a t-test. Roll has
the smallest bias. This is consistent with Schultz (2000)
who shows that Roll well captures the magnitude of the
effective spread for intraday data. Roll, Effective Tick,
Effective Tick2, Gibbs, and Holden have relatively low root
mean squared errors ranging from 0.029 to 0.032.19

Holden and Gibbs have the lowest root mean squared
errors, which are not significantly different from each
other based on a paired t-test.

For the realized spread, Panel G, Effective Tick2 has the
smallest mean bias of 0.001, and Gibbs has the lowest root
mean squared error. Interestingly, Roll, which can be
thought of as a proxy for realized spread, is outperformed
by the new measures on this dimension.

Summarizing the monthly spread evidence in Table 2,
we generally conclude that low-frequency measures
designed to estimate spread do, in fact, provide accurate
measures of both effective and realized spreads computed
from TAQ data. These measures are highly correlated at
the firm and the portfolio levels, and provide low bias and
small mean squared error. Not surprisingly, we find that
measures intended to capture other features of transac-
tion costs, Amihud, Pastor and Stambaugh, and Amivest,
do a poor job estimating effective and realized spreads,
and zero returns is inferior to all other measures designed
to capture effective spread. Note that we think of
‘‘winning’’ as providing high and consistent correlations
together with low bias and low root mean squared error.
Clearly, Effective Tick, Effective Tick2, Holden, and LOT Y-
split fit this definition. Roll and Gibbs do well in many
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Table 3
Annual spread proxies compared to TAQ benchmarks

The benchmarks Effective spread (TAQ) and Realized spread (TAQ) are calculated from every trade and corresponding BBO quote in the NYSE TAQ database for a sample firm-year. All spread proxies are

calculated from CRSP daily stock price and volume data for a sample firm-year. The Spread Proxies are: Roll from Roll (1984), Effective Tick and Effective Tick2 developed here and in Holden (2009), Holden from

Holden (2009), Gibbs from Hasbrouck (2004), LOT Mixed, Zeros, and Zeros2 from Lesmond, Odgen, and Trzcinka (1999), LOT Y-split developed here, Amihud from Amihud (2002), Pastor and Stambaugh from

Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The sample spans 1993–2005 inclusive and consists of 400 randomly selected stocks with annual replacement of stocks that do not survive,

resulting in 5,200 firm-years. Bold numbers are statistically significant at the 5% level. * means that the correlation is statistically significantly different at the 5% level from all other correlations in the same row.
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cases, but they are not consistent: they have periods of
much lower correlation (1997–2000) and subsamples that
are much lower (large cap stocks and low effective spread
stocks) than the other measures.

The annual results in Table 3 are mostly consistent
with the monthly evidence. We therefore summarize
them briefly.20 We again generally conclude that low-
frequency measures designed to estimate spread provide
accurate measures of effective/realized spread computed
from TAQ data. Overall, six measures dominate, in the
sense of having a high and consistent correlation together
with low bias and mean squared error: Roll, Effective Tick,
Effective Tick2, Holden, Gibbs, and LOT Y-split. The
discussion of Table 9 below highlights a failure of Roll
and Gibbs over annual data in an out-of-sample test.
Therefore, effectively, Effective Tick/Tick2, Holden, and
LOT Y-split are the best measures on this dimension.
7.2. Monthly/annual price impact results

Table 4 provides monthly price impact evidence,
comparing price impact proxies calculated from daily
prices and volumes each month with two monthly price
impact benchmarks (Lambda and 5-Minute Price Impact)
calculated from TAQ data.

Panel A reports the average cross-sectional correlation
of each low-frequency price impact proxy with each price
impact benchmark. If we look at the measure with the
largest correlation and then consider the measures within
its confidence interval, we get a picture of which measures
are superior. Amihud has the highest correlation with the
Lambda of 0.317 and is insignificantly different from Roll
Impact, Effective Tick Impact, Effective Tick2 Impact,
Holden Impact, Gibbs Impact, LOT Mixed Impact, LOT Y-
split Impact, and Zeros Impact. Therefore, all nine
measures are in the top leadership group for this horse-
race. For the 5-Minute Price Impact, Amihud has the
highest correlation at 0.516 and is statistically signifi-
cantly higher than any other measure.

Next, we form equally weighted portfolios across all
400 stocks in a given month. Panel B reports the time-
series correlation over 156 months of each low-frequency
price impact proxy portfolio with each price impact
benchmark portfolio calculated from TAQ. As before, most
portfolio correlations are higher than the individual stock
correlations. Roll Impact has the highest correlation with
the Lambda of 0.562 and is insignificantly different from
all measures except Gamma and Amivest at the 5% level.
Roll Impact, however, is significantly different from
Effective Tick/Tick2 Impact and Amihud at the 10% level.
Overall, all measures except Pastor and Stambaugh’s
Gamma and Amivest do a reasonable job on this
dimension. Roll Impact has the highest correlation with
5-Minute Price Impact of 0.517 and is insignificantly
different from Gibbs Impact, Holden Impact, Lot Mixed
Impact, LOT Y Impact, Zeros Impact, Zeros2 Impact, and
20 A detailed discussion of the results is available from the authors

upon request.
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Table 4
Monthly price impact proxies compared to TAQ benchmarks

The benchmarks Lambda (TAQ) and 5-Minute Price Impact (TAQ) are calculated from every trade and corresponding BBO quote in the NYSE TAQ database for a sample firm-month. All price impact proxies are

calculated from CRSP daily stock price and volume data for a sample firm-month. The price impact proxies are: Roll Impact, Effective Tick Impact, Effective Tick2 Impact, Holden Impact, Gibbs Impact, LOT Mixed

Impact, and LOT Y-split Impact developed here, Amihud from Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The sample spans 1993–2005 inclusive

and consists of 400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 62,100 firm-months. Bold numbers are statistically significant at the 5% level. * means that the

correlation is statistically significantly different at the 5% level from all other correlations in the same row.
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Table 5
Annual price impact proxies compared to TAQ benchmarks

The benchmarks Lambda (TAQ) and 5-Minute Price Impact (TAQ) are calculated from every trade and corresponding BBO quote in the NYSE TAQ database for a sample firm-year. All price impact proxies are

calculated from CRSP daily stock price and volume data for a sample firm-year. The price impact proxies are: Roll Impact, Effective Tick Impact, Effective Tick2 Impact, Holden Impact, Gibbs Impact, LOT Mixed

Impact, and LOT Y-split Impact developed here, Amihud from Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The sample spans 1993–2005 inclusive

and consists of 400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 5,200 firm-years. Bold numbers are statistically significant at the 5% level. * means that the

correlation is statistically significantly different at the 5% level from all other correlations in the same row. * means that the correlation is statistically significantly different at the 5% level from all other

correlations in the same row. R
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Amihud. These eight measures are in the top leadership
group for this horserace.

The prediction error and mean squared error compar-
isons do not provide any meaningful information if the
two variables are on completely different scales. There-
fore, we omit the mean bias and root mean squared error
calculation for price impact measures.

The annual results of Table 5 are generally consistent
with the monthly evidence. For brevity, we skip the
discussion of Table 5 and summarize monthly and annual
results together.

Summarizing the Lambda (TAQ) horseraces of Tables 4
and 5, Roll Impact seems to have a slight edge because it
has the highest correlation in two of the four horseraces.
However, in most horseraces, it is statistically insignif-
icantly different from the rest of the new class of price
impact proxies developed in this paper and the Amihud
measure. Gamma and Amivest are consistently domi-
nated.

Summarizing the 5-Minute Price Impact horseraces of
Tables 4 and 5, Amihud is the best single proxy of the five-
minute price impact, being in the leadership group in all
four correlation tests and standing by itself in one of them.
In three of the four horseraces, the new class of price
impact proxies is insignificantly different from Amihud.
Roll Impact yields the highest correlations of the new
class, so it is a close second behind Amihud.
7.3. Rule 605 results

As discussed above, the new Rule 605 data allow us to
test the robustness of our previous results by using a
completely different high-frequency database. Accord-
ingly, Table 6 presents evidence based on Rule 605 data
from October 2001 to December 2005. Panels A, B, and C
compare spread proxies with effective spread calculated
from the Rule 605 data. Panels D, E, and F compare price
impact proxies with static price impact calculated from
Rule 605 data.

The Rule 605 results presented in Panel A are relatively
similar to the corresponding TAQ results. The same six
measures have relatively high average cross-sectional
correlations in nearly the same range as the TAQ data
and are statistically significant. Amihud has the highest
correlation at 0.533 and Effective Tick and Holden are in
its 95% confidence interval.

The time-series correlations are presented in Panel B
for the Rule 605 data. Like the TAQ results, the time-series
correlations of the portfolios are much higher than the
cross-sectional correlations of individual stocks. The top
measure for the time-series, Effective Tick, has the highest
correlation and all measures except Gamma and Amivest
are in their 95% confidence interval. Unlike the TAQ
results, the highest time-series correlation with Rule 605
effective spreads is 0.528 vs. a time-series correlation of
0.951 with the TAQ effective spread. It is not clear why the
correlations are so different, but two benchmarks are
fundamentally different. Effective Spread (TAQ) is the
average cost of all trades, whereas Effective Spread (605)
is the average cost of all marketable orders executed.
A market buy and market sell that cross at the midpoint
(with a zero effective spread) counts as one TAQ trade, but
counts as two Rule 605 marketable order executions. In
addition, there are differences in: (1) trade type uncer-
tainty in TAQ vs. certainty in Rule 605, (2) effective spread
computation (absolute value in TAQ vs. signed value in
Rule 605), (3) aggregation (dollar-volume-weighted with
TAQ vs. share-volume-weighted with Rule 605), and (4)
midpoint timing (midpoint at time of trade in TAQ vs.
midpoint at time of order submission in Rule 605).
However, the leading low-frequency proxies remain in
the leadership group no matter which benchmark (TAQ or
Rule 605 effective spread) we select.

Next, Rule 605 results presented in Panel C on the
prediction error are roughly similar to those in Table 2.
Effective Tick2 has the smallest bias and is statistically
significantly smaller than any other measure. Gibbs has
the smallest root mean squared error and is insignificantly
different from Holden. Summarizing Panels A to C, the
monthly Rule 605 spreads results show that low-
frequency measures computed from daily returns are able
to capture effective spreads reported by the market
centers. Overall, in terms of correlations and prediction
errors, Holden, Effective Tick, and Effective Tick2 are the
best proxies of Rule 605 effective spread.

In Panel D, we present evidence on price impact for the
Rule 605 data. Recall that Lambda (TAQ) is calculated from
a regression, whereas Static Price Impact (605) is
calculated as the difference between the effective spreads
associated with large and small orders, divided by the
difference between large and small order shares. Thus, it is
not especially surprising to see very different results for
Static Price Impact (605) presented in Panel D and for
Lambda (TAQ). Essentially, all of the average cross-
sectional correlations between the price impact proxies
and Static Price Impact (605) are insignificantly different
from zero. All of the proxies fail to pick up Static Price
Impact (605). In Panel E, we get similar results. Finally,
Panel F reports the prediction errors of the price impact
proxies with respect to Static Price Impact (605). We
report mean prediction bias and root mean squared error
only for the measures that are on the same scale as Static
Price Impact (605). While Panels D and E show that the
measures fail to capture most of the variation of Static
Price Impact (605), they do reasonably well in estimating
the level in Panel F. The mean bias is the smallest in
absolute value for Effective Tick2 Impact, �0.031, with
Holden and Gibbs Impact falling in its 95% confidence
interval. Root mean squared error is the smallest for Gibbs
Impact with Effective Tick/Tick2 and Holden Impact being
in its 95% confidence interval. Summarizing Panels D to F,
while all of the price impact proxies fail to capture time-
series or cross-sectional variations in Static Price Impact
(605), the new class of price impact does a good job of
predicting the level.

Overall, Table 6 shows that actual effective spread data
reported by the market centers can be accurately
estimated using measures computed from daily returns.
The table also shows that the new price impact measures
developed in this paper can be used to estimate the level
of Static Price Impact (605).
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Table 6
Monthly spread and price impact proxies compared to 605 benchmarks

The benchmarks Effective Spread (605) and Static Price Impact (605) are calculated from data required to be disclosed under SEC Rule 605 (formerly 11Ac1-5) for a sample firm-month. All spread proxies and

price impact proxies are calculated from CRSP daily stock price and volume data for a sample firm-month. The spread proxies are: Roll from Roll (1984), Effective Tick and Effective Tick2 developed here and in

Holden (2009), Holden from Holden (2009), Gibbs from Hasbrouck (2004), LOT Mixed, Zeros, and Zeros2 from Lesmond, Odgen, and Trzcinka (1999), LOT Y-split developed here, Amihud from Amihud (2002),

Pastor and Stambaugh from Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The price impact proxies are: Roll Impact, Effective Tick Impact, Effective Tick2 Impact, Holden Impact, Gibbs Impact,

LOT Mixed Impact, and LOT Y-split Impact developed here, Amihud from Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The sample spans 10/2001 to

12/2005 inclusive and consists of 400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 19,039 firm-months. Bold numbers are statistically significant at the 5% level. *

means that the correlation is statistically significantly different at the 5% level from all other correlations in the same row.
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aAll price impact measures are multiplied by 1,000,000, except for Liquidity which is divided by 1,000,000.

Table 6. (continued)
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Table 7
NYSE/AMEX Vs. NASDAQ breakdown for monthly proxies compared to TAQ benchmarks

The benchmarks Effective spread (TAQ), Realized spread (TAQ), Lambda (TAQ), and 5-Minute Price Impact (TAQ) are calculated from every trade and corresponding BBO quote in the NYSE TAQ database for a

sample firm-month. All spread proxies and price impact proxies are calculated from CRSP daily stock price and volume data for a sample firm-month. The spread proxies are: Roll from Roll (1984), Effective Tick

and Effective Tick2 developed here and in Holden (2009), Holden from Holden (2009), Gibbs from Hasbrouck (2004), LOT Mixed, Zeros, and Zeros2 from Lesmond, Odgen, and Trzcinka (1999), LOT Y-split

developed here, Amihud from Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The price impact proxies are: Roll Impact, Effective Tick Impact,

Effective Tick2 Impact, Holden Impact, Gibbs Impact, LOT Mixed Impact, and LOT Y-split Impact developed here, Amihud from Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the

Amivest Liquidity ratio. The sample spans 1993–2005 inclusive and consists of 400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 62,100 firm-months. Bold

numbers are statistically significant at the 5% level.
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7.4. Results by exchange

For robustness, we explore the degree to which our
results vary across exchanges. In Table 7, we break out the
monthly spread and price impact evidence by exchange,
sorting firms into two groups based on NYSE/AMEX and
NASDAQ. In Panel A, with respect to average cross-
sectional correlations with effective and realized spreads,
all spread proxies except Gibbs and Roll21 show a lower
correlation for NASDAQ stocks than for NYSE stocks. The
largest differences are associated with Effective Tick and
Holden where the first digit of the correlation coefficient
changes. In contrast, the time-series correlations, Panel B,
show that the measures do better for NASDAQ stocks than
NYSE. Nearly the same pattern holds for correlations with
the realized spread. Finally, the price impact measures are
mixed across exchanges. The conclusion from this table is
that the exchange does not matter very much and should
not be a factor in using low-frequency spread or price
impact proxies.
7.5. Results by year

Our next robustness check is to explore how our results
vary over time. Specifically, Table 8 breaks out the
monthly effective spread, realized spread, and price
impact evidence by year. Panels A and B report the time
variation of cross-sectional correlations and root mean
squared error for the effective spread benchmark. In each
month there are 400 observations for a correlation and
root mean squared error, which are averaged over the
year. The two panels tell opposite stories. Panel A shows
that the cross-sectional correlations decrease over time
for seven measures (Roll, Effective Tick, Effective Tick 2,
Holden, Gibbs, LOT Mixed, and LOT Y-split). The decline is
strongest during the decimal era (2001–2005). By con-
trast, the Amihud measure does not decline over time and
joins the leadership group in the decimal era only. This
result contrasts with the Table 2, Panel C result that the
$1/8 era and decimal era had very high time-series
correlations, while the $1/16 era had somewhat lower
time-series correlations. In Panel B, all measures improve
in their ability to predict the effective spread. LOT Mixed
has a root mean squared error that is 81% more accurate in
2005 than in 1993. The same pattern is observed for the
realized spread benchmark in Panels C and D. The mean
squared error is the square of the bias plus the variance of
the estimator. The fact that the correlation coefficient has
fallen but the errors are smaller is the result of the
measure having lower bias and smaller variance.

In Panels E and F we present the average correlations
between the price impact measures and the two high-
frequency measures of price impact used in this paper.
Generally, the measures are statistically significant in all
tables and demonstrate considerable volatility in Panel E
21 Schultz (2000) estimates the Roll measure using intraday TAQ

data. He finds that the intraday Roll measure is a very accurate estimate

of effective spread, because various biases in Roll tend to offset each

other in his NASDAQ sample.
(Lambda), and deterioration, except Amihud, in Panel F
(5-Minute Price Impact).

7.6. Dow Jones data

Our final robustness test is to test the spread measures
out-of-sample. We examine the stocks in the Dow Jones
Industrial Average from 1962 to 2000.22 The spread
benchmark is the percent quoted spread of the Dow
portfolio as computed by Jones (2002). For every year we
compute each of the low-frequency spread proxies for
each of the 30 Dow stocks and then equally weight the
measures across stocks for the year since the historical
spreads for the Dow stocks are available only on an annual
basis.

Table 9 shows the results. The biggest surprise is the
large negative and significantly negative correlation
coefficients on the Roll and Gibbs measures. Roll’s time-
series correlation is �0.642 and Gibbs’ time-series
correlation is �0.395. Of course, the Dow Jones stocks
are large capitalization stocks with low effective spreads.
In that respect, the poor annual performance of Roll and
Gibbs with the Dow Jones stocks is very consistent with
the poor monthly performance of Roll and Gibbs with large
capitalization deciles and low effective spread deciles in
Table 2, Panels D and E.

As a double-check on this result, we estimate the
average autocovariance of daily price changes for each
stock. Whenever we have positive autocovariance we
change it to a zero value, consistent with the way we
construct the Roll measure. We then correlate the average
absolute value of the autocovariance with the spread and
find a �55% correlation. Thus, in this sample of large,
liquid stocks, the lower the spread the higher the absolute
value of the autocovariance. This is the opposite relation-
ship supposed by Roll, who argues that liquid stocks
should have lower autocovariance than illiquid stocks.

For the other measures in Table 9, the correlations
between the average measure and the average quoted
spread are generally smaller than the time-series portfolio
correlations of Table 3 Panel B, but they are still large and
significant. Effective Tick, Effective Tick2, and Holden all
have time-series correlations greater than 0.840 and are
statistically insignificantly different from each other. Also,
LOT Y and Zeros/Zeros2 fall in their 95% confidence
interval. Fig. 1 shows the time series for the quoted
spread of the Dow Jones portfolio and the low-frequency
measures Holden, LOT Y-split, and Effective Tick. These
data generate the correlations of Table 9. The low-
frequency measures track the quoted spread very well,
especially at the end of the sample. The conclusion of
Table 9 and Fig. 1 is that the measures are useful on a
different sample of stocks over a different time period.

8. Conclusion

The purpose of this paper is to test the hypothesis that
low-frequency measures of transaction costs, measured
22 We thank Charles Jones for these data.
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Table 8
Year-by-year breakdown for monthly proxies compared to TAQ benchmarks

The benchmarks Effective spread (TAQ), Realized spread (TAQ), Lambda (TAQ), and 5-Minute Price Impact (TAQ) are calculated from every trade and corresponding BBO quote in the NYSE TAQ database for a

sample firm-month. All spread proxies and price impact proxies are calculated from CRSP daily stock price and volume data for a sample firm-month. The effective spread proxies are: Roll from Roll (1984),

Effective Tick and Effective Tick 2 developed here and in Holden (2009), Holden from Holden (2009), Gibbs from Hasbrouck (2004), LOT Mixed, Zeros, and Zeros2 from Lesmond, Odgen, and Trzcinka (1999), LOT

Y-split developed here, Amihud from Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the Amivest Liquidity ratio. The price impact proxies are: Roll Impact, Effective Tick Impact,

Effective Tick2 Impact, Holden Impact, Gibbs Impact, LOT Mixed Impact, and LOT Y-split Impact developed here, Amihud from Amihud (2002), Pastor and Stambaugh from Pastor and Stambaugh (2003), and the

Amivest Liquidity ratio. The sample spans 1993–2005 inclusive and consists of 400 randomly selected stocks with annual replacement of stocks that do not survive, resulting in 62,100 firm-months. Bold

numbers are statistically significant at the 5% level.
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monthly and annually, can usefully estimate high-fre-
quency measures, and if so, to determine which measures
are best. Using a sample of 400 randomly selected stocks
over the period 1993 to 2005, we compare all prior
proxies, three new spread measures, and nine new price
impact measures. Specifically, we first compute the
effective and realized spreads and several measures of
price impact from two high-frequency data sets: TAQ and
Rule 605 data disclosed by market centers to the SEC. We
then compute the low-frequency measures from daily
return and volume data available on CRSP on a monthly
and annual basis. We statistically determine how well the
low-frequency measures capture high-frequency bench-
marks.

The evidence is overwhelming that both monthly and
annual low-frequency measures capture high-frequency
measures of transaction costs. Indeed, in many applica-
tions the correlations are high and the mean squared error
low enough that the effort of using high-frequency
measures is simply not worth the cost. The only real
question then is: which measure should a researcher use?
The answer depends on what, exactly, the researcher
wants to measure.

For monthly and annual effective and realized spreads,
we find that three measures dominate the remaining nine
in correlations and mean squared prediction errors. The
simplest of the dominant measures is the analytic
‘‘Effective Tick.’’ The most computationally intensive is
the ‘‘Holden’’ measure. Intermediate in computational
requirements is LOT Y-split. All provide statistically
significant and useful measures, high correlations, and
low root mean squared errors, regardless of the database
we use (TAQ or Rule 605). Without considering computa-
tional requirements, Holden delivers the best perfor-
mance overall. Considering ease of computation,
Effective Tick is the best measure to use. Measures widely
used in the literature, namely, Amihud’s Illiquidity, Pastor
and Stambaugh’s Gamma, and Amivest’s Liquidity, are not
appropriate to use as proxies for effective or realized
spreads.

We find that price impact is more difficult to capture in
our data than effective or realized spread. The measures
are not designed to capture the magnitude of high-
frequency price impact benchmarks and the correlations
with price impact are lower than in the effective/realized
spread tests. However, both the new class of price impact
measures we introduce in this paper and the Amihud
measure do a reasonably good job in the sense that they
produce statistically significant positive correlations.
Pastor and Stambaugh’s Gamma and Amivest’s Liquidity
are ineffective in capturing price impact in our data. We
suggest using either the Amihud measure or using one of
our effective spread measures divided by volume if a
researcher wants to capture price impact.

For specific high-frequency transaction costs bench-
marks we suggest different low-frequency measures. To
capture Lambda (TAQ), which is the coefficient from
regressing return on the square root of signed trading
volume over five-minute intervals, we suggest either
Amihud’s Illiquidity or one of the new measures. To
measure 5-Minute Price Impact, or the five-minute
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change in midpoint after the trade, we suggest using the
Amihud Illiquidity measure.

All price impact measures fail to capture cross-
sectional or time-series variation of Static Price Impact
(605). It is possible that this difficulty lies primarily in the
fact that Rule 605 data exclude block trades, where price
impact should be most severe. In other words, much of the
variation of Static Price Impact (605) may be noise.
However, the new class of price impact measures does a
good job in predicting the level of Static Price Impact (605)
and has very low mean bias and root mean squared error.

We conduct several robustness checks on these
conclusions. First, we examine the pattern of these
measures over time. Second, we examine whether listing
exchange matters. Finally, we test the ability of these
measures to predict the percent quoted spread of the Dow
portfolio from 1962 to 2000. The conclusions are essen-
tially the same in these tests. The measures vary over time
in their ability to capture high-frequency measures, but
the dominant measures are the same group over time.
Interestingly, all measures based on price clustering seem
to deteriorate in capturing the effective spread during the
decimals regime, while the Amihud correlations continue
to perform reasonably well during the last years of the
sample. Further, exchange listing does not matter and the
low-frequency measures do well in predicting the quoted
spreads on Dow stocks.

As with any empirical paper several caveats should be
mentioned. First, using a random sample in this paper
means that caution should be used in applying these
measures to other samples or other time periods. Second,
we do not know whether the measures are effective on
international data, especially in relation to those stocks
with extremely thin trading. Both limitations suggest
avenues for future research. With these limitations in
mind, we think the results of this paper are strong enough
that use of the low-frequency proxies to extend asset
pricing, market efficiency, and corporate finance research
back in time and around the world is a step that the
finance literature needs to take.
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